thermoscientific #### **Authors** Dr. Liliana Krotz and Dr. Guido Giazzi Thermo Fisher Scientific, Milan, Italy ### **Keywords** Animal Feed, CHNS, Food Quality, Food Supplements, Labeling, QA/QC ## Goal To demonstrate the performance of the Thermo Scientific Flash *Smart* Elemental Analyzer for nitrogen/protein determination in food and animal feed. # Introduction Food and animal feed is made up of chemical compounds that determine flavor, color, texture and nutritional value, and are carefully regulated by federal authorities and various international organizations to ensure that they are safe to eat and are accurately labelled. One of the main analyses for quality control and R&D purposes is elemental characterization. The determination of nitrogen, carbon, hydrogen and sulfur, provides useful information on the characterization of these materials. It is therefore very important to have an accurate and precise technique, preferably automatic, that allows fast analysis with excellent reproducibility. The Thermo Scientific™ FlashSmart™ Elemental Analyzer (Figure 1) copes effortlessly with the wide array of laboratory requirements such as accuracy, precision and day to day reproducibility. Figure 1. Thermo Scientific FlashSmart Elemental Analyzer. ## **Methods** For CHNS determinations, the elemental analyzer operates according to the dynamic flash combustion of the sample. The sample is weighed in a tin capsule and introduced into the combustion reactor via the Thermo Scientific™ MAS Plus Autosampler with oxygen. After combustion, the resultant gases are carried by a helium flow to a layer filled with copper, then swept through a GC column that separates the combustion gases, finally being detected by a Thermal Conductivity Detector (TCD) (Figure 2). Total run time is less than 10 minutes. For NCS or for sulfur only determination, the water produced during combustion is adsorbed through a H₂O trap before entering the GC column. Figure 2. FlashSmart CHNS configuration. For NC determination, after combustion, the produced gases are carried by a helium flow to a second reactor filled with copper, then swept through a H₂O trap, a GC column, before finally being detected by a thermal conductivity detector. Total run time is less than five minutes (see Figure 3). Figure 3. FlashSmart NC configuration. A complete report is automatically generated by the Thermo Scientific $^{\scriptscriptstyle{\text{TM}}}$ Eager $Smart^{\scriptscriptstyle{\text{TM}}}$ Data Handling Software and displayed at the end of the analysis. ### **Results** Different food and animal feed related products with a large range of elemental concentrations were analyzed in various configurations, to show the performance of the instrument in terms of repeatability. For the CHNS, NCS and sulfur only determinations, the addition of Vanadium Pentoxide (oxygen donor) was used for a complete conversion of the sulfur, and the instrument was calibrated with the standards BBOT* and nicotinamide. For NC determination, acetanilide and aspartic acid were used as standards to calibrate the instrument. In all cases, K factor was used as the calibration method. ^{*} BBOT: 2,5-Bis (5-tert-butyl-benzoxazol-2-yl) thiophene. Table 1 shows the CHNS data obtained from different sample matrices. The weight of sample was 2–3 mg for animal gelatines and food supplement A, 3–4 mg for starch and food supplement C, 8–10 mg for food supplement B. No memory effect was observed when changing the sample nature, indicating complete combustion of all samples with quantitative determination of the elements. Table 1. CHNS data. | Sample | N% | RSD% | С% | RSD% | Н% | RSD% | S% | RSD% | |-------------------|---|-------|--|-------|---|-------|---|-------| | Fish gelatine | 16.249
16.212
16.189 | 0.185 | 43.023
43.099
43.051 | 0.089 | 6.902
6.608
6.586 | 2.632 | 0.394
0.408
0.408 | 2.004 | | Bovine gelatine | 15.796
15.835
15.838 | 0.148 | 44.615
44.647
44.624 | 0.037 | 6.623
6.658
6.622 | 0.309 | 0.531
0.536
0.537 | 0.601 | | Porcine gelatine | 16.088
16.016
16.043 | 0.226 | 44.460
44.397
44.379 | 0.096 | 6.631
6.659
6.582 | 0.585 | 0.531
0.536
0.537 | 0.970 | | Starch | 2.530
2.516
2.537
2.520
2.528 | 0.329 | 31.008
30.850
31.000
30.956
30.967 | 0.204 | 5.396
5.456
5.415
5.373
5.310 | 1.004 | 0.399
0.396
0.391
0.392
0.398 | 0.902 | | Food supplement A | 13.168
13.160
13.194 | 0.137 | 52.179
52.084
52.178 | 0.104 | 6.665
6.626
6.626 | 0.311 | | | | Food supplement B | 0.071
0.071
0.073 | 1.109 | 8.0197
8.0251
8.0241 | 0.036 | 2.207
2.199
2.209 | 0.254 | | | | Food supplement C | 0.330
0.332
0.329 | 0.533 | 40.615
40.396
40.630 | 0.323 | 6.274
6.331
6.323 | 0.488 | 0.366
0.368
0.357 | 1.581 | Table 2 shows the NCS data obtained from different sample matrices. The weight of the sample was 3–4 mg. No memory effect was observed when changing the sample nature, indicating complete combustion of all samples with quantitative determination of the elements. Table 2. NCS data. | Sample | N% | RSD% | C% | RSD% | S% | RSD% | |---------------|---|-------|--|-------|--|-------| | Animal feed 1 | 2.525
2.523
2.444 | 1.850 | 40.432
40.342
40.215 | 0.270 | 0.160
0.143
0.155 | 5.723 | | Animal feed 2 | 3.892
3.845
3.810 | 1.069 | 44.752
44.893
44.235 | 0.776 | 0.287
0.282
0.277 | 1.773 | | Meat 1 | 13.726
14.057
13.931 | 1.199 | 50.315
50.107
50.026 | 0.298 | 0.776
0.790
0.784 | 0.901 | | Meat2 | 12.939
12.979
13.013 | 0.286 | 51.064
50.886
50.879 | 0.206 | 0.724
0.732
0.721 | 0.742 | | Meat 3 | 12.255
12.243
12.232 | 0.094 | 53.381
53.486
53.495 | 0.118 | 0.764
0.774
0.764 | 0.798 | | Meat 4 | 12.451
12.369
12.459 | 0.399 | 52.603
52.701
52.597 | 0.111 | 0.785
0.783
0.781 | 0.199 | | Potato tuber | 0.874
0.893
0.896
0.868
0.883 | 1.330 | 39.542
39.528
39.382
39.389
39.348 | 0.229 | 0.0709
0.0698
0.0716
0.0721
0.0709 | 1.221 | Table 3 shows the sulfur data obtained from different soya and maize samples. The weight of the sample was 3–4 mg. Table 3. Sulfur data. | Sample | S% | RSD% | |---------|---|-------| | Soya 1 | 0.356 - 0.336 - 0.338 - 0.350 - 0.343 - 0.341 | 2.214 | | Soya 2 | 0.351 - 0.344 - 0.343 | 1.635 | | Soya 3 | 0.372 - 0.373 - 0.363 | 1.725 | | Soya 4 | 0.366 - 0.363 - 0.364 | 0.388 | | Maize 1 | 0.115 - 0.114 - 0.116 - 0.113 - 0.113 - 0.106 | 3.137 | | Maize 2 | 0.119 – 0.111 | 4.919 | | Maize 3 | 0.104 - 0.104 | 0 | | Maize 4 | 0.112 - 0.102 | 6.608 | | Maize 5 | 0.102 – 0.100 | 1.396 | Table 4 shows the NC data of blood flour, meat flour and food supplements. The weight of sample was 9–10 mg for blood flour and meat flour while for food supplements the weight was 10–20 mg. Table 4. NC data. | Sample | N% | RSD% | C% | RSD% | |-------------------|----------------------------|-------|----------------------------|-------| | Blood flour | 14.536
14.307
14.427 | 0.797 | 48.791
49.238
49.052 | 0.458 | | Meat flour | 7.213
7.474
7.385 | 1.804 | 32.008
33.287
32.722 | 1.963 | | Food supplement 1 | 5.739
5.747
5.744 | 0.071 | 14.598
14.623
14.612 | 0.084 | | Food supplement 2 | 11.365
11.391
11.369 | 0.123 | 45.625
45.303
45.343 | 0.385 | | Food supplement 3 | 5.845
5.831
5.863 | 0.269 | 17.127
17.115
17.161 | 0.138 | | Food supplement 4 | 3.630
3.613
3.634 | 0.310 | 37.093
36.975
36.956 | 0.201 | #### **Conclusions** The FlashSmart EA allows the quantitative recovery of the elements from any matrix with no memory effect observed when changing the sample. The advantage of the FlashSmart EA lies in its ability to perform NC determination or simultaneous CHNS determination in a single run. By a simple modification of the CHNS configuration, the analysis of NCS or sulfur only can be performed using the same analytical conditions. # Find out more at thermofisher.com/OEA ©2017 Thermo Fisher Scientific Inc. All rights reserved. AOAC is a trademark of The Association of Official Analytical Chemists; AOCS is a trademark of The American Oil Chemists' Society; AACC is a trademark of The American Association of Cereal Chemists; ASBC is a trademark of The American Society of Brewing Chemists; IFFO is a trademark of The International Fishmeal and Fish Oil Organization. ISO is a trademark of the International Standards Organization. All other trademarks are the property of Thermo Fisher Scientific. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. **AN42196-EN 0317**